A PRP type method for systems of monotone equations
نویسندگان
چکیده
منابع مشابه
Dynamical systems method for solving nonlinear equations with monotone operators
A version of the Dynamical Systems Method (DSM) for solving ill-posed nonlinear equations with monotone operators in a Hilbert space is studied in this paper. An a posteriori stopping rule, based on a discrepancytype principle is proposed and justified mathematically. The results of two numerical experiments are presented. They show that the proposed version of DSM is numerically efficient. The...
متن کاملDynamical Systems Method for ill - posed equations with monotone operators ∗
Consider an operator equation (*) B(u) − f = 0 in a real Hilbert space. Let us call this equation ill-posed if the operator B (u) is not boundedly invertible, and well-posed otherwise. The DSM (dynamical systems method) for solving equation (*) consists of a construction of a Cauchy problem, which has the following properties: 1) it has a global solution for an arbitrary initial data, 2) this s...
متن کاملa new type-ii fuzzy logic based controller for non-linear dynamical systems with application to 3-psp parallel robot
abstract type-ii fuzzy logic has shown its superiority over traditional fuzzy logic when dealing with uncertainty. type-ii fuzzy logic controllers are however newer and more promising approaches that have been recently applied to various fields due to their significant contribution especially when the noise (as an important instance of uncertainty) emerges. during the design of type- i fuz...
15 صفحه اولA new iteration method for solving a class of Hammerstein type integral equations system
In this work, a new iterative method is proposed for obtaining the approximate solution of a class of Hammerstein type Integral Equations System. The main structure of this method is based on the Richardson iterative method for solving an algebraic linear system of equations. Some conditions for existence and unique solution of this type equations are imposed. Convergence analysis and error bou...
متن کاملA New Version of the Dynamical Systems Method (dsm) for Solving Nonlinear Equations with Monotone Operators
A version of the Dynamical Systems Method for solving ill-posed nonlinear monotone operator equations is studied in this paper. A discrepancy principle is proposed and justified. A numerical experiment was carried out with the new stopping rule. Numerical experiments show that the proposed stopping rule is efficient.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical and Computer Modelling
سال: 2009
ISSN: 0895-7177
DOI: 10.1016/j.mcm.2009.04.007